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Stationary axisymmetric electromagnetic fields in the Kerr 
metric 
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Poincare, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France 

Received 12 October 1978 

Abstract. A procedure for calculating the Debye potential corresponding to a stationary 
axisymmetric distribution of charges and currents in the Kerr metric is given. The 
electromagnetic potential is derived by differentiation. The potential of a point charge on 
the symmetry axis and the value of the charge resulting from the accretion in the case of a 
charged current loop situated in the equatorial plane are determined with this formalism. 

1. Introduction 

The generation of an electromagnetic field by stationary or dynamical sources in the 
Schwarzschild and the Kerr background has been a subject of considerable investiga- 
tion. This paper is devoted to solving the field for all stationary axisymmetric dis- 
tributions of charges and currents in the Kerr metric. 

We have shown (Linet 1976) that it is possible to determine the electrostatics and 
the magnetostatics in the Schwarzschild metric. We have given the electrostatic 
potential of a point charge at rest in algebraic form and a formula allowing us to find the 
magnetic potential in integral form. With this method in the case of a current loop a 
numerical calculation is possible (Damour er a1 1978). Another method was to give 
these solutions in the form of series of multipoles (Cohen and Wald 1971, Hanni and 
Ruffini 1973, Petterson 1974, Bicak and Dvorak 1977). 

Recently we have determined explicitly (Linet 1977a) the stationary axisymmetric 
Green function of the equation of Teukolsky (1973). It means that the complex 
components 4o and d2 of the electromagnetic field, in Newman and Penrose notation, 
can be determined from stationary axisymmetric sources. Yet the other component q51 
and the two components A,  and Ab of the electromagnetic potential are not explicitly 
calculated. We shall see that this is possible by using the Debye potential introduced by 
Cohen and Kegeles (1974). 

In  0 2 we shall summarise the Maxwell equations for a stationary axisymmetric field 
in the Kerr metric, and we shall show how to derive the electromagnetic potential from 
the Debye potential. The main result shall be given in § 3, where we shall determine the 
Debye potential corresponding to the Green function of the Teukolsky equation for do. 
We shall discuss also the monopole field. Thus we have a procedure for calculating 
fields generated from stationary axisymmetric sources. Another method was to give 
these solutions in the form of series of multipoles (Cohen er a1 1974, Chitre and 
Vishveshwara 1975, Petterson 1975, King 1976, Bicak and Dvorak 1976, Znajek 
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1978). In 0 4 we shall use this formalism to find easily the potential of a point charge on 
the symmetry axis given by L6aut6 (1977) (the electromagnetic field has been given also 
by Misra (1977)). The case of a charged current loop situated in the equatorial plane 
shall be examined. We shall give the charge accretion (Linet 1977b) and the behaviour 
of the electromagnetic field when the radius of the loop tends to the horizon. 

2. Maxwell equation in the Kerr metric 

The Kerr space-time is characterised by the two parameters M and a with a S M .  In 
the Boyer and Lindquist coordinates the Kerr metric g,, is 

sin’ 0) d4’, 
2a’Mr 

with A(r) = 1’- 2Mr + a’ and 2 = r’ + a’ cos’ B. The Schwarzschild metric is obtained 
by putting a = 0 in (1). 

From the practical point of view, we must use the null tetrad formalism to solve the 
Maxwell equation in the background metric (1). Following standard convention, the 
components of the Kinnersley tetrad are 

1 
22 

n” : - ( r 2  + a’, -A(r), 0, a), 

mcI: 1 (ia sin e, 0, I,-). i 
J2(r + ia cos e) sin e 

Then the electromagnetic field is described by three tetrad components 

40= F,,1”mY, 41 = iF,,(lgn” + mILmY), 42 = FPvm ”n ”. (3) 

By the method of Teukolsky (1973) one can derive from the Maxwell equation 

VpFP” = 4?rJ”, apA, + arF,, + arFpA = 0, (4) 

where J”  is the current density, a decoupled equation for the quantities 

* 1 =  40, = ( r  - ia cos e)’4,. ( 5 )  

4-1 = -iA(r)+i,  (6 )  

In the case of stationary axisymmetric solutions we have 

and +,, s = *1 satisfies the equation 

a’ a+, 1 a 
- A ( r ) ~ + ~ - 2 ( s + l ) ( r - M ) - - -  - +(s’cot’ 6-s)+,=4?rTSX,, 

ar ar sin e ae 
(7) 

where the term T, is expressed in terms of J” and its derivatives following the 
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Teukolsky equation. The source is assumed to be situated outside the outer horizon 
r+ = M + (M’ - a2)1’2. 

For a source-free Maxwell field, Cohen and Kegeles (1974) have shown that the 
components 4o and 41 can be generated by differentiation of a Debye potential: 

4o = -a2J /ar2 ,  (8) 

- 
a2 

-+cot 8+ia sin 8- +-+cot 8- tL,. 
( a  ,”,, ar ae ar J 2 ( r - i a  cos e ) [  r-ia cos e ae 

- 1 
& = -  - 

(9) 

The Debye potential satisfies the same homogeneous equation as (7) for s = - 1 .  It is 
useful to note that (7) has real coefficients; thus 3 satisfies the same equation. 

On the other hand, the Maxwell field derives from a potential 

F,, = a,A, - a d w  (10) 

It is more practical to introduce the tetrad components Ai, A ,  and A,. In the case of 
stationary axisymmetric solutions it is easy to see that 

where A is a real quantity. Indeed 

A ,  = (A(r)Ai + a  sin 8A)/Z, 

A& = - [ ( r 2  + a 2 )  sin BA + a  sin2 OA(r)Ai]/Z. 

We remark that the component 4o is obtained by differentiation from the tetrad 
components A and Ai  in a simple way: 

Comparing (12) with (81, we determine the components A and Ai by differentiation of 
the Debye potential: 

(14) A = h a  cos 8 a Re q l d r  - J?(-r a Im q / a r  + Im 6) 
-4% a cos 8 a 1 

sin 8 
Ai =- (- Re $ +- Re Im 4 + - Im &), 

A ( r )  ae sin e 
The electromagnetic potential is given by equations (14) and ( 1 5 )  in the Lorentz gauge. 
We note that the equations of Chrzanowski (1975) giving the potential in the ingoing 
radiation gauge Ai = 0 from the Debye potential are not applicable in a stationary case. 

3. Determination of the Debye potential 

We want to determine the Debye potential corresponding to an electromagnetic field 
generated by a stationary axisymmetric source. As (or 9-1) specifies the solution of 
the Maxwell equation (except the monopole term), the first problem is to give the Green 
function of equation (7); that is a solution of (7) with the source term 

eo + 0, r, (16) Ts(r, 8)=6(r-ro)6(cos @-cos B O ) / X ,  
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which is well-behaved at infinity and on the horizon r+ .  The case 8, = 0 or 7r will be 
examined later because the following method breaks down for 8, = 0 or T. 

We introduce the function fs by 

fs(r, e )  = (sin O)-sh(r,  e) ,  (17) 

and the new variables p and z by 

z = ( r  - M )  cos 8, p = A'/'(r) sin 8, r 3 r+, p 3 0.  (18) 

Then fs satisfies the equation 

where po and z o  are defined from ro and Bo with the help of equations (18). 
The 'generalised axially symmetric potential' theory (GASP theory) is governed by 

the homogeneous equation (19) (Weinstein 1948). We give the Green function for 
s = l :  

,?i 

fib, z ) =  -2pg J, [ ( z  - ~ o ) ~ + p ~ + p ~  -2pp0 cos sin' a da.  (20) 

Taking account of (17) and (1% we obtain the Green function of (7) for s = 1:  

Gl(r, 8 ;  ro, 6,) = -2 sin 0 sin OoA(ro) 1," - da,  

where we have put 

g2 = (r -MI'  + (r0-M)'- 2(r - M ) ( r o - M )  cos e cos e, 
- ( M 2  - a2)(sin2 0 +sin2 0,) - 2A1/2(r)A'/2(ro) sin 8 sin Bo cos a. 

For all stationary axisymmetric sources situated outside 80 = 0 or r we can find with 
(21) the component 4, by the product of convolution 4, = Gl*TIE defined by 

m r r  

4dr, e )  = 1, 1, Gl(r, e ;  ro, eO)Tl(ro, e , ) ( r ;  +U'  cos2 e,) sin e, deo dro. (22) 

The Debye potential corresponding to (21) is calculated by using the function g 

(23) 

which satisfies, in the coordinates p and z, the GASP equation for s = 1.  A basic property 
of this equation is that the values of g on the axis p = 0 allow us to determine the 
complete function in integral form: 

defined by 

$(r, 0 )  = A(r) sin eg(r, e) ,  

2 "  
g(p , z )= -  J g (o , z+ ip  cosa ) s in2a  da .  (24) 

T o  

But we remark 
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Thus g on the axis p = 0 can be calculated from G1 by integrating it in the relation (8) at 
6 = 0. We find 

- ( ~ ’ - a ’ )  sin2 e o ] 1 / 2 - ( r - ~ ) + ( r o - ~ )  cos e 0 } + C l ( r - M ) + ~ 2 ,  

where C1 and C2 are two arbitrary constants, and the term between the square brackets 
tends to zero as l / r  when r + CO. Consequently 

Introducing the value of g(0, z )  from (27) in (24) we obtain g(p ,  z), and by differen- 
tiation the electromagnetic potential. 

The two constants C1 and C2 in (27) induce two Debye potentials giving the 
monopole field. If it is characterised by the total charge E, we can replace these two 
Debye potentials by one depending only on E: 

4. Examples 

4.1. Point charge on the symmetry axis 

The current density for a point charge 4 at rest on the symmetry axis has the expression 

The source term TIZ can be calculated from (29). We obtain 

a 4 1  
JZ ro + ia ae 6(r-ro)--S(cos 8 -  1). TIE=- - 

We have shown (Linet 1977, unpublished) that the solution of (7) for the source (30) 
is 

where we have introduced the notation 

~ ~ . = ( r - ~ ) ~ + ( r ~ - ~ ) ~ - 2 ( r - ~ ) ( r ~ - ~ )  cos e-(M2-u2) sin’e. 

By integrating (8) for 4o given by (31) we obtain the Debye potential 

---[B-(r-M)+(ro-M)cos e]-- -. $(r, 0 )  = -- - 
- 

(32) 
1 q I - C O S ~  1 

J2 ro+ ia sin e JZ sin e 



844 B Linet 

By differentiation of (32) we find the tetrad components of the electromagnetic 
potential: 

r -M-( ro -M)  cos 8 
3 -M(I -cos e)) a 

-%+(r-rOcose) 

( r - ~ ) ( r ~ - ~ ) - ( ~ ~ - a ~ )  cos e 
3 Adr, e) =4A(r)(r2+a2) ((Tor + a2 cos e) (33) 

It is easy to see that (33) coincides with the expression for the components A,  and Ab 
given by LCautC (1977). The components of the electromagnetic field have also been 
given by Misra (1977). 

4.2. Charged current loop 

We consider a charged current loop in the equatorial plane. The Kerr space-time 
represents a rotating geometry; thus the interpretation of the components of the current 
density J’ is difficult. We choose to define the current density with respect to the locally 
non-rotating observer 77 introduced by Bardeen (1970). The components of 7’ are 
proportional to 

(190, 09 -g,,/g&b). (34) 

In the case of a loop of charge we define the current density as collinear to 77. If q is 
the total charge of the loop, we have 

For the stationary observer with respect to infinity there is a current loop with fictitious 
intensity 

4. Jt = 
gd, e = n / 2 , r = r o  

In the case of a current loop we 
observer 7) ; then 

define the current density as orthogonal to the 

) 
J 

2 r r O  
J W :  ( 0 ,  0 ,  0 ,  7 S ( r  - ro)a(cos e) . 

In (36) we must express J from the intensity of the current I defined by the observer 77. 
In the orthonormal tetrad associated with 77 there is a three-dimensional current density 

In order to obtain the intensity Z of this current, we must integrate the density I’ on the 
plane t and 4 constant: 

I = Z3(X/A1’*(r)) dr de. J 
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Consequently this integral expresses J in terms of I :  

A1/'(ro) I. J =  
J-g** I o =  T / 2 .  r = r 0  

For a charged current loop the source term TIZ can be calculated. 

a 
+[ -a  (J  + Jf) + q ] ~ ( r  - ro)  -8 (cos e -cos eo)/ 80=T/z  

aeo 

- iro(J + J f ) S ( r  - ro)8(cos e )  . ) 

(37) 

Taking into account the expression for J given by (37) and the definition of Jf, the first 
term in (38) contains A' /2 ( ro )  as a factor. Thus the 4o found by convolution (22) with GI 
vanishes when the radius of the loop tends to the horizon and the electromagnetic field 
tends to the monopole field with charge 4. 

We are not going to determine explicitly the Debye potential corresponding to this 
charged current loop. Rather, we shall examine the physical problem of the charge 
accretion that one has studied with this source. In order to do this calculation we have to 
know the electrostatic potential A,  on the symmetry axis (Wald 1974, Carter 1973). By 
equations (1  1)  we see that 

r-ia sin 6 (39) 

Thus from equation (26)  we find for a stationary axisymmetric source 

1 1 
r -ia sin Bo 

A,(r,  0) = - 2 r h  Re [ -( - [ ( r  - M)' + ( ro  - M ) 2  - 2(r - M)(ro  - M )  cos do 

- (M'-u')  sin2 ~ ~ l ' / ~ - ( r - ~ ) + ( r ~ - ~ )  cos eo * T ~ X  +E=. 
(40) 

r 
) 1 r + a  

On the horizon the electrostatic potential (40) takes the value - 
r J2  1 + COS eo A,(r+ ,O)= --Re 
M 

Equation (41) is equivalent to that of Linet (1977b). 
For a charged current loop we obtain from (41) 

A,(r+, 0) = - (J  +Jf)a/ro+q/ro+ Q/2M, (42) 
where 0 is the charge resulting from the accretion. In order that the total charge is zero, 
we put q = -Q. When the process of accretion is finished, we have A,(r+, 0) = 0. Taking 
into account the expressions for J and Jf, we find 

Q = I - - ( r ~ + a 2 + ~ ~  2Ma 1 1 / 2  . 
ro A'12(ro) ro (43) 

The value Q given by (43) is finite at the ergosphere ro = 2M at eo = 7r/2. With our 
definition of the current density J p  we get rid of the infinity at ro = 2M in (42) (equation 
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given previously by Damour (1977) and Linet (1977b)). Equation (43) is a rectification 
of that of Petterson (1975). We note that Znajek (1978) has studied the charge 
accretion for a charged current loop situated axisymmetrically but not equatorially with 
respect to the Kerr metric. 

5. Conclusion 

In the Kerr metric we have determined the Debye potential corresponding to a 
stationary axisymmetric distribution of charges and currents. It should be mentioned 
that this method can make a numerical approach easier. 
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